Elastic fields of quantum dots in subsurface layers

نویسندگان

  • A. E. Romanov
  • A. F. Ioffe
  • W. T. Fischer
  • J. S. Speck
چکیده

In this work, models based on conventional small-strain elasticity theory are developed to evaluate the stress fields in the vicinity of a quantum dot or an ordered array of quantum dots. The models are based on three different approaches for solving the elastic boundary value problem of a misfitting inclusion embedded in a semi-infinite space. The first method treats the quantum dot as a point source of dilatation. In the second approach we approximate the dot as a misfitting oblate spheroid, for which exact analytic solutions are available. Finally, the finite element method is used to study complex, but realistic, quantum dot configurations such as cuboids and truncated pyramids. We evaluate these three levels of approximation by comparing the hydrostatic stress component near a single dot and an ordered array of dots in the presence of a free surface, and find very good agreement except in the immediate vicinity of an individual quantum dot. © 2001 American Institute of Physics. @DOI: 10.1063/1.1352681#

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further Improvement in Efficiency of ZnO Nanorod Based Solar Cells Using ZnS Quantum Dots as Light Harvester and Blocking Layer Material

Zinc oxide nanorod arrays (ZnO NRs) were grown on the ZnO seed layers via an aqueous solution using hydrothermal method and their photovoltaic properties were investigated. It was found that the growth period of 20 minutes is the optimum condition for ZnO nanorods growth, the cell containing these nanorods was considered as a reference cell. In order to further increase the cell performance, Zn...

متن کامل

Electron and hole confinement in stacked self-assembled InP quantum dots

We report photoluminescence measurements on stacked self-assembled InP quantum dots in magnetic fields up to 50 T. For triply stacked layers the dots become strongly coupled when the layer separation is 4 nm or less. In contrast, doubly stacked layers show no sign of coupling. We explain this puzzling difference in coupling by proposing a model in which the holes are weakly confined in the GaxI...

متن کامل

Degenerate four waves mixing in multilayer nanoshell

We will present a detailed investigation of intersubband transitions process in core-multi shells quantum dots. The confined wave functions and eigenenergies of electrons in quantum dots have been calculated under the effective-mass approximation by solving a three-dimensional Schrodinger equation. Excellent dependence is found between size effects, time relaxation and degenerate four wave mixi...

متن کامل

Degenerate four waves mixing in multilayer nanoshell

We will present a detailed investigation of intersubband transitions process in core-multi shells quantum dots. The confined wave functions and eigenenergies of electrons in quantum dots have been calculated under the effective-mass approximation by solving a three-dimensional Schrodinger equation. Excellent dependence is found between size effects, time relaxation and degenerate four wave mixi...

متن کامل

Interactions of metallic quantum dots on a semiconductor substrate

Experiments have shown that uniform metallic quantum dots may self-assemble on a semiconductor substrate. The observation calls for a repulsive force when the dots are close. In a traditional quantum dot system, such as Ge dots on a Si substrate, such an action is achieved by elastic interaction. This paper proposes a mechanism for metallic dots without coherent lattice or lattice mismatch, so ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001